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Optical excitable waves
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We show that an optical system, a laser with an injected signal, behaves as an excitable medium. This
property gives rise to propagating pulses if the active medium is spatially extended. We study the properties of
those waves and we demonstrate that they may annihilate or cross each other depending on the control
parameter values.@S1063-651X~98!02503-3#

PACS number~s!: 05.90.1m, 03.40.Kf, 42.25.Md
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Excitable waves have been studied for a long time in b
logical and chemical systems which have been considere
the only ones to present such phenomena. From a m
ematical point of view, excitable waves were described
reaction-diffusion equations@1#. A typical feature of these
waves is, for example, that they annihilate each other du
the process of crossing. Only recently have experimental
theoretical work done on liquid crystals@2,3# shown the ex-
istence of excitable waves in an almost purely mechan
system. In the latter case the waves appeared as spiral
very similar to those observed in the Belousov-Zhabotin
reaction@4#. In a recent work, Argentinaet al. @5# studied the
annihilation or survival of excitable pulses after crossin
The transition from one behavior to another was associa
to a global bifurcation of the nucleation solution associa
with the ignition process~ignition solution!.

The aim of this paper is to give an example of excita
waves in an explicit optical system: the laser with an injec
signal@7#. This system allows the variation and control of t
parameters large enough to observe both processes: an
lation and crossing of pulses. In the first part we show t
the usual model of a laser with an injected signal, includ
diffraction effects can be reduced to a single one partial
ferential equation for the phase of the electromagnetic fi
in some special region of parameter space. Excitable pu
are then studied analytically in the framework of this equ
tion. Finally the problem of the annihilation or the crossi
of pulses after their collision is considered.

We consider a laser with an injected signal. This dyna
cal system is described in terms of the well-known Maxwe
Bloch equations for a collection of two level atoms in t
slowly varying approximation and including diffraction e
fects:

] tE52k@~11 iu!E2P2 iaExx#1 idE1 f ,

] tP52g'@~12 iu!P2ED#1 idP, ~1!

] tD52g iS D2L1
1

2
~E* P1EP* ! D ,

whereE, P, andD are the electromagnetic field, the atom
polarization and the population inversion, respectively,k,
g' , andg i are their respective loss rates,L is the pumping
rate, f is the amplitude of the external electric field, anda is
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the diffraction coefficient.d is the detuning of the externa
signal with respect to the laser frequency without exter
field vR5 (kvC1g'vA)/(k1g') andu is the detuning be-
tween the cavity frequency and the atomic frequency n
malized to the lossesu5 (vC2vA)/(k1g'). Equation~1!
considers only one spatial variablex perpendicular to the
direction of the propagation of the electromagnetic field.
more general case can be treated by adding another sp
coordinate, however, one-dimensional system is enough
our purposes, and several lasers may work properly in
condition as with semiconductor lasers which possess a l
dimension in one transverse spatial direction while the ot
is smaller than the wavelength. The spatial dependence
the direction of propagationz was eliminated by considering
valid the uniform field approximation and a single longitud
nal mode laser, which are common assumptions in la
theory. Furthermore, the system is considered to have a
large aspect ratio such that the boundaries will not affect
dynamical behavior. It is worthwhile to note that this mod
even if too simple to describe many real lasers with circu
aperture or/and multimode operation, it may apply for bro
area edge emitter semiconductor lasers. We consider tha
pump and the external field are independent of the transv
coordinatex which is also a common assumption in las
theory, and that it does not represent a restriction to exp
mental setups. However, the aim of this paper is to report
possibility of observing excitable waves in optics, and w
hope it will encourage further work on the subject, both the
retically and experimentally. Our model has stationary so
tions corresponding to the frequency locking to the the
ternal field. We first demonstrate that, for some parame
range, the stable locked state is excitable in the sense th
finite excitation leads to pulse propagation. Close to the la
threshold Eq.~1! can be reduced to a modified Ginzbur
Landau equation@8#. A small parameter is defined a
L[Lc1e2, whereLc represents the critical pump param
eter. One assumes thatd and f are small quantities which
scale asd[e2d̃ and f [e3 f̃ , whered̃ and f̃ are order unity.
One then introduces ‘‘slow’’ time and space variabl
e2t[T andex[X. This analysis is valid closed to the las
threshold. However, for very smalle, and therefore very
close to threshold, the correlation length will diverge and
aspect ratio of the system is small. Thus, excitable waves
no longer possible. As we increase the pump values,
5347 © 1998 The American Physical Society
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correlation length decreases and the boundary conditions
comes less important because the system increases its a
ratio. It must be noted that the results of the numerical sim
lations do not depend on particular boundary conditions p
vided the aspect ratio is big enough to support excita
waves.

The fieldsE, P, andD are then expanded in a series ofe.
At the first order one gets

E15A~X,T!, P15~11 iu!A~X,T!, D150.

At the second order one gets

E25P250, D25~12uA~X,T!u2.

The equation to be satisfied byA(X,T) is found as a solv-
ability condition at the third order:

AT5~G r1 iG i !A~12uAu2!1~Dr1 iD i !AXX

1 i d̃A1~g r1 ig i !, ~2!

whereG r , G i , Dr , andDi have been given in@8# and

g r5
Di

ak
f̃ , g i52

Dr

ak
f̃ .

Let us introduce the real amplitude and the phase of
forcing g exp(iQ0)[gr1igi . The angleQ0 represents the
relative phase of the locked laser and the external field w
d̃50. By simple algebra we find

tan~Q0!5
2Dr

Di
5

2k2g'u

u2~k2g'!2~k1g'!
.

ThereforeQ0 is determined by the ratio between diffusio
and diffraction in the optical system. Notice that for vanis
ing detuning, the phaseQ0 vanishes, and the locked state
in phase with the external signal. In Eq.~2!, all the coeffi-
cients have magnitudes which can vary from zero to unity
order to obtain a simple interpretation of the excitability
the locked state, let us consider an asymptotic limit of Eq.~2!
in which one assumesg!1. New time and space variable
are then introduced ashT5t andAhX5j, whereh scales
the smallness ofg and d̃ : g5hg8 and d̃5hd8, whereg8
andd8 represent finite quantities. At the orderh0 one gets

A~12uAu2!50,

whose solution isA5exp$i@Q(j,t)2Q0#%. At first order one
obtains the equation for the phase of the electric field

Qt5d82g8sin~Q!1DrQjj2DiQj
2. ~3!

An obvious scaling transforms this equation into

Q t5D2sin~Q!1Qxx2YQx
2, ~4!

where D5 d8/g8 represents the external detuning norm
ized to the strength of the injected signal. WhenuDu,1 a
locked solution exists and it is stable@QL5arcsin(D)#.
The coefficientY5 Di /Dr measures the dispersive-diffusiv
character of the medium. When u5u*
e-
pect
-
-

le

e

n

-

n

-

5A(k1g')/(k2g'), the medium is purely diffusive
(Y50). Pulse solutions can be obtained analytically in t
limit of a weak detuning and a weak dispersion. Wh
D5Y50, Eq. ~4! reduces to the overdamped sine-Gord
equation

Q t52sin~Q!1Qxx , ~5!

which possesses a particular stationary kink solution

QK6
564 arctan@exp~x!#.

These phase kinks appear as pulses when one looks to p
cal quantities such as, for example, the intensity of the lig
since they are 2p periodic functions ofu which can also
depend on the spatial gradient of the phase]xQ and its de-
rivatives with respect tox. For small detuning and disper
sion, one can look for traveling pulses of the form

Q~x,t !5QK~x2ct!1••• ,

where the ellipses represent higher order corrections. Rew
ing Eq. ~4! in a reference frame moving at velocityc, and
multiplying it by the gradient ofQK6

, we can integrate to
obtain the speed of the propagating pulses. At the lead
order in the perturbation, one obtains the velocity of the
citable pulse

c5
p

4
~D22Y!.

This ends the analysis which demonstrates the existe
of excitable pulse solutions of the Maxwell-Bloch equati
describing a laser with an injected signal. Of course,
usual, the robust solutions found using asymptotic te
niques are likely to transform into more nonlinear solutio
when one moves away from the limiting case. It is the ca
of our excitable phase pulses which becomes more ampli
and phase dependant when the forcing increases as we
show later numerically. We now address the question of
ignition: how do we characterize the excitations which le
to the generation of pulses? This question is related to
nucleation theory of the first order phase transition. It w
addressed in general for excitable media in@6#. We first
show the existence of the ignition solution and then ske
the study of its stability. The ignition solution is obtained
a stationary solution of Eq.~4! which possesses the proper
Q(`)5Q(2`)5QL . In other words, it is a homoclinic
solution of the second order differential equation which d
scribes the stationary solution

Qx5V,

Vx52D1sin~Q!1YV2. ~6!

The locked solution corresponds to a saddle node of
differential equation. The existence of a homoclinic soluti
can be demonstrated for smallY. WhenY50, Eq. ~6! has
the simple mechanical interpretation of the Newton equat
describing the dynamics of a mass unity in a poten
W(u)5DQ1cos(Q). The maxima of this potential are
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~modulo 2p) the locked solutions~see Fig. 1!. The existence
of a homoclinic trajectory is then obvious.

When Y is small, a perturbation analysis allows us
show the persistence of a homoclinic trajectory. In fact,
smallY the Melnikov condition, which insures the existen
of the homoclinic solution reads*Hx

3dx50 whereH(x) is
the homoclinic solution of the unperturbed system, and i
always satisfied sinceHx is an odd function. The reversibil
ity property of Eq. ~6!, Q→Q,V→2V,x→2x is at the
origin of the property of persistence. The stability of t
ignition solution Q I(x) can be obtained analytically fo
Y50 andD close to 1. More generally, forY50, and arbi-
trary uDu,1, the linearized equation of the perturbatio
Q(x,t)5Q I(x)1w(x)exp(st) is a Schro¨dinger equation:

sw52cos@Q I~x!#w~x!1wxx . ~7!

Thanks to the space translational invariance of Eq.~4!,
dQ I /dx is a solution of this equation corresponding to a ze
eigenvalue. Since this eigenfunction has a single node, a
eral property of the Schro¨dinger spectrum@9#, allows us to
assert that Eq.~7! possesses only one solution with a positi
eigenvalue. The stable manifold of the ignition solutionWs
~see Fig. 2! thus acts as a separatrix in the infinite dime
sional phase space of Eq.~4!. On one side of this manifold
the flow describes a smooth convergence towards the loc
state. On the other side it describes the process of the nu
ation of two pulses which then move apart from one anot
and leads eventually to the locked state when they disap
at infinity or though the boundary. We denote the part of
one-dimensional unstable manifold which corresponds to
nucleation of two pulses from the ignition solution asWu

1 .
This picture is obviously valid for small values ofY since
the ignition solution is hyperbolic.

As expected excitable pulses do exist for parameter va
where Eq.~4! or Eq. ~2! are no longer good approximation
of Eq. ~1!. In this case the analysis is more difficult and c
only be done numerically. We sketch here only the ba
steps. We first locate parameter values where the hom
neous locked solutionEL exists and is stable. We then re
stricts the parameter values to those where this is the
stable homogeneous solution of Eq.~1!. We restrict further-
more the parameter values in order to insure the existenc

FIG. 1. Sketch of the potentialW(u)5DQ1cos(Q). The igni-
tion solution corresponds to a trajectory that leaves the top of a
QL on the right and then bounces back to return toQL.
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an ignition solution. This solutionEI(x) is then an ho-
moclinic solution of the fourth order differential equatio
which describes the stationary solution of Eq.~1!. The results
are presented in Fig. 3~a!, where we show the annihilation o
two pulses after their collision.

In a slightly different parameter regime, the excitab
pulses cross after collision@see Fig. 3~b!#. This surprising
behavior was described in@5,6#. It is related to an Andronov
homoclinic bifurcation@10# of the ignition solution. At the
bifurcation point, the collision of two pulses leads to th
exact ignition solution. The signature of this change of b
havior can be traced back to an Andronov homoclinic bif
cation of the space independent solution of the Maxw
Bloch equations which leads to a global stable limit cyc
while the excitable homogeneous locked state still exists.
the parameter values where the pulses crosses, the spa
dependent Maxwell-Bloch equations experience bistabi
between this limit cycle and the excitable homogeneo
state.

In conclusion, we have shown that an explicit model us
in optics to describe a laser with an injected signal in
extended medium is able to support excitable waves. F

ill

FIG. 2. Sketch of local phase portrait close to the ignition so
tion in the functional space of the phase equation.

FIG. 3. Collision experiments (L55, a51, d520.99,
u50.92, g i51,g'550,k53). ~a! Annihilation of the pulses
( f 51.85).~b! Crossing of the pulses (f 51.70).
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thermore those excitable waves may annihilate or cross e
other depending on the values of the control paramet
Analyzing several models of other related optical problem
such as bistable passive systems, a laser with optical f
back@11#, or a laser with a saturable absorber@12#, it is easy
to recognize that they possess in principle the neces
tt

ett
ch
s.
,
d-

ry

elements to show the kind of phenomena we descri
above.
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