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Optical excitable waves
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We show that an optical system, a laser with an injected signal, behaves as an excitable medium. This
property gives rise to propagating pulses if the active medium is spatially extended. We study the properties of
those waves and we demonstrate that they may annihilate or cross each other depending on the control
parameter value$S1063-651X98)02503-3

PACS numbd(s): 05.90+m, 03.40.Kf, 42.25.Md

Excitable waves have been studied for a long time in biothe diffraction coefficients is the detuning of the external
logical and chemical systems which have been considered afgnal with respect to the laser frequency without external
the only ones to present such phenomena. From a matield wg= (kwc+ vy, wpa)/(k+y,) andé is the detuning be-
ematical point of view, excitable waves were described bytween the cavity frequency and the atomic frequency nor-
reaction-diffusion equationfl]. A typical feature of these malized to the losseg= (we—wp)/(k+7,). Equation(1)
waves is, for example, that they annihilate each other duringonsiders only one spatial variabie perpendicular to the
the process of crossing. Only recently have experimental angrection of the propagation of the electromagnetic field. A
theoretical work done on liquid crystalg,3] shown the €x- 516 general case can be treated by adding another spatial

istence of excitable waves in an almost purely mechanicaly o ginate, however, one-dimensional system is enough for
system. In the latter case the waves appeared as spiral o purposes, and several lasers may work properly in this

very similar to those observed in the Belousov-Zhabotinsky.,gition as with semiconductor lasers which possess a large

reaction[4]. In a recent work, Argentinat al.[5] studied the  gimension in one transverse spatial direction while the other
annihilation or survival of excitable pulses after crossing.is smaller than the wavelength. The spatial dependence on

" X L
The trIarE)S|'|[|(t))r_1f from onefb?]haworl to anothei\r was assoqatef‘e direction of propagation was eliminated by considering
to a global biturcation of the nucleation solution associateq5|iq the uniform field approximation and a single longitudi-

wnhghe !gmtl]?nh.procesﬁgnltlon solution). e of excitablen? Mode laser, which are common assumptions in laser
The aim of this paper is to give an example of excitable oy Fyrthermore, the system is considered to have a very

waves in an explicit optical system: the laser with an injected qe"aspect ratio such that the boundaries will not affect its
signal[7]. This system allows the variation and control of thed namical behavior. It is worthwhile to note that this model,

parameters large enough to observe both processes: anniiGe, if tog simple to describe many real lasers with circular

ltztéogsﬁg?nﬁ(r)%filgg ;:aglgf(\j;ﬁ:na;hien .ggggirit \rll\/:I Si?\gmc;i?]a perture or/and multimode operation, it may apply for broad
diffracti p be reduced Ject | gna, Inc | d.fgarea edge emitter semiconductor lasers. We consider that the

Ifiraction effects can be reduced to a single one partial dify, ;1 504 the external field are independent of the transverse
ferential equation for the phase of the electromagnetic fiel ; ;

in some special region of parameter space. Excitable pulsgfie,ry “and that it does not represent a restriction to experi-

are th‘?” studied analytically in the T“’?‘m?WO“‘ of this €qua-ental setups. However, the aim of this paper is to report the
tion. Finally the problem of the annihilation or the crossing

) A . ossibility of observing excitable waves in optics, and we
of pulses after their collision is considered. b y d P

W id | hoan in d sianal. This d . hope it will encourage further work on the subject, both theo-
e consider a laser with an injected signal. This dynamisgieq)ly and experimentally. Our model has stationary solu-
cal system is described in terms of the well-known Maxwell-

) . ; tions corresponding to the frequency locking to the the ex-
Bloch equations for a collection of two level atoms in the P g d y g

lowl ; A d including diffracti ¢ ternal field. We first demonstrate that, for some parameter
slowly varying approximation and including difiraction ef- 6 the stable locked state is excitable in the sense that a

fects: finite excitation leads to pulse propagation. Close to the laser
GE=—«[(1+i9)E—P—iaE,,]+i6E+f, threshold Eq.(l_) can be reduced to a modi_fied G_inzburg-
Landau equation[8]. A small parameter is defined as
oP=—v,[(1-i0)P—ED]+i P, (1) A=At €%, where A represents the critical pump param-

eter. One assumes thatand f are small quantities which

scale asd= €75 and f=€%f, where'd andf are order unity.
One then introduces “slow” time and space variables
e’t=T and ex=X. This analysis is valid closed to the laser
whereE, P, andD are the electromagnetic field, the atomic threshold. However, for very smal, and therefore very
polarization and the population inversion, respectively, close to threshold, the correlation length will diverge and the
v, , andy, are their respective loss rate$,is the pumping aspect ratio of the system is small. Thus, excitable waves are
rate,f is the amplitude of the external electric field, amis  no longer possible. As we increase the pump values, the

1
aD=~y|D-A+ 5 (E*P+EP*) ),
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correlation length decreases and the boundary conditions be=\/(x+ y,)/(k—v,), the medium is purely diffusive
comes less important because the system increases its aspgrt=0). Pulse solutions can be obtained analytically in the
ratio. It must be noted that the results of the numerical simutimit of a weak detuning and a weak dispersion. When
lations do not depend on particular boundary conditions proA=Y =0, Eq. (4) reduces to the overdamped sine-Gordon
vided the aspect ratio is big enough to support excitablequation

waves.
The fieldsk, P, andD are then expanded in a serieseof
At the first order one gets

E,=A(X,T), P:;=(1+i6A(X,T), D,;=0.
At the second order one gets
E,=P,=0, D,=(1-|AX,T)|%

The equation to be satisfied (X, T) is found as a solv-
ability condition at the third order:

Ar= (T +iT)A(1—=|A]?) + (D, +iD;)Axx
+i73A+('y,+i'yi), 2

wherel’,, I';, D,, andD; have been given if8] and

0,=—siN0)+0,,, )

which possesses a particular stationary kink solution

Oy, = =4 arctafexpx)].

These phase kinks appear as pulses when one looks to physi-
cal quantities such as, for example, the intensity of the light,
since they are Z periodic functions off which can also
depend on the spatial gradient of the phag® and its de-
rivatives with respect tox. For small detuning and disper-
sion, one can look for traveling pulses of the form

O(X,)=O(Xx—Ct)+--- ,

where the ellipses represent higher order corrections. Rewrit-
ing Eq. (4) in a reference frame moving at velocity and
multiplying it by the gradient of® , we can integrate to

obtain the speed of the propagating pulses. At the leading

Let us introduce the real amplitude and the phase of th@rder in the perturbation, one obtains the velocity of the ex-

forcing y exp(®y)=v,+iy,. The angle®, represents the

citable pulse

relative phase of the locked laser and the external field when

'5=0. By simple algebra we find

D, 2k%y, 6

= = .
an©o) D; 02(K_7L)_(K+7L)

Therefore® is determined by the ratio between diffusion
and diffraction in the optical system. Notice that for vanish-
ing detuning, the phas®, vanishes, and the locked state is

in phase with the external signal. In E@), all the coeffi-

~Tia-2v
C—Z( ).

This ends the analysis which demonstrates the existence
of excitable pulse solutions of the Maxwell-Bloch equation
describing a laser with an injected signal. Of course, as
usual, the robust solutions found using asymptotic tech-
nigues are likely to transform into more nonlinear solutions
when one moves away from the limiting case. It is the case
of our excitable phase pulses which becomes more amplitude

cients have magnitudes which can vary from zero to unity. In, 4 phase dependant when the forcing increases as we will

order to obtain a simple interpretation of the excitability of

the locked state, let us consider an asymptotic limit of ).
in which one assumeg<1. New time and space variables
are then introduced agT= 7 and \'7X= &, where scales
the smallness ofy andd : y= 7y’ andd=5d’, wherey’
and 6’ represent finite quantities. At the ordsf one gets

A(1-|A]%)=0,

whose solution iA=exp{i[0(&7)—0]}. At first order one
obtains the equation for the phase of the electric field

0,=8"—y'sin(®)+D,0 4—D;0%. 3
An obvious scaling transforms this equation into
O,=A—sin0)+0,,~YO2, (4)

where A= §'/y" represents the external detuning normal-

ized to the strength of the injected signal. WhHerj<1 a
locked solution exists and it is stable® =arcsinA)].
The coefficientY = D; /D, measures the dispersive-diffusive
character of the medium. When 6= 6*

show later numerically. We now address the question of the
ignition: how do we characterize the excitations which lead
to the generation of pulses? This question is related to the
nucleation theory of the first order phase transition. It was
addressed in general for excitable media[@. We first
show the existence of the ignition solution and then sketch
the study of its stability. The ignition solution is obtained as
a stationary solution of Eq4) which possesses the property
O(x)=0(—»)=0_. In other words, it is a homoclinic
solution of the second order differential equation which de-
scribes the stationary solution

0,=9,

Q,=—A+sin(®)+YQ2 (6)

The locked solution corresponds to a saddle node of this
differential equation. The existence of a homoclinic solution
can be demonstrated for small. WhenY =0, Eq. (6) has

the simple mechanical interpretation of the Newton equation
describing the dynamics of a mass unity in a potential
W(0)=A0 +cos@). The maxima of this potential are
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AO+cos(©)

§

FIG. 1. Sketch of the potentiaV(8) =A® + cos@). The igni-
tion solution corresponds to a trajectory that leaves the top of a hill
®_ on the right and then bounces back to returr®ta

(modulo 27) the locked solutiongsee Fig. 1. The existence
of a homocll_nlc trajectory is then.ObVIOus' . FIG. 2. Sketch of local phase portrait close to the ignition solu-
When Y is .Sma”’ a perturbano_n. anaI_yS|s allows us to tion in the functional space of the phase equation.
show the persistence of a homoclinic trajectory. In fact, for
small’Y the Melnikov condition, which insures the existence
of the homoclinic solution readfH3dx=0 whereH(x) is
the homoclinic solution of the unperturbed system, and it i
always satisfied sincH, is an odd function. The reversibil-
ity property of Eq.(6), ®—0,Q0——Q,x——X is at the
origin of the property of persistence. The stability of the
ignition solution ®(x) can be obtained analytically for pulses cross after collisiofsee Fig. &)]. This surprising

Y =0 andA close tc_) 1. More generally, for =0, and arbi-_ behavior was described [5,6]. It is related to an Andronov
trary [A|<1, the linearized equation of the perturbation pomqciinic bifurcation[10] of the ignition solution. At the

an ignition solution. This solutiorE,(x) is then an ho-
moclinic solution of the fourth order differential equation
hich describes the stationary solution of EL. The results
are presented in Fig(8, where we show the annihilation of
two pulses after their collision.
In a slightly different parameter regime, the excitable

0(x,1)=0,(x) +w(x)exp(t) is a Schrdinger equation: bifurcation point, the collision of two pulses leads to the
exact ignition solution. The signature of this change of be-
ow=—c0g 0,(X) JW(X) +W,y. (7)  havior can be traced back to an Andronov homoclinic bifur-

cation of the space independent solution of the Maxwell-

Thanks to the space translational invariance of &),  Bloch equations which leads to a global stable limit cycle,
d®, /dx is a solution of this equation corresponding to a zeroWhile the excitable homogeneous locked state still exists. For
eigenvalue. Since this eigenfunction has a single node, a geH1e Parameter values where the pulses crosses, the space in-
eral property of the Schdinger spectruni9], allows us to  dependent Maxwell-Bloch equations experience bistability
assert that Eq(7) possesses only one solution with a positivePetween this limit cycle and the excitable homogeneous
eigenvalue. The stable manifold of the ignition solutidy  State- _ .
(see Fig. 2 thus acts as a separatrix in the infinite dimen- [N conclusion, we have shown that an explicit model used
sional phase space of E@). On one side of this manifold, I optics to dgscnpe a laser with an mpcted signal in an
the flow describes a smooth convergence towards the lockegiténded medium is able to support excitable waves. Fur-
state. On the other side it describes the process of the nucle-
ation of two pulses which then move apart from one another t t <
and leads eventually to the locked state when they disappear
at infinity or though the boundary. We denote the part of the
one-dimensional unstable manifold which corresponds to the
nucleation of two pulses from the ignition solution &4 .
This picture is obviously valid for small values af since
the ignition solution is hyperbolic.

As expected excitable pulses do exist for parameter values
where Eq.(4) or Eqg.(2) are no longer good approximations
of Eq. (1). In this case the analysis is more difficult and can
only be done numerically. We sketch here only the basic X X
steps. We first locate parameter values where the homoge- (a) (b)
neous locked solutiofe, exists and is stable. We then re-
stricts the parameter values to those where this is the only FIG. 3. Collision experiments X\=5, a=1, 6=-0.99,
stable homogeneous solution of Ed). We restrict further-  =0.92, y,=1,y, =50x=3). (@ Annihilation of the pulses
more the parameter values in order to insure the existence ¢f =1.85)(b) Crossing of the pulsesf & 1.70).
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thermore those excitable waves may annihilate or cross eadiements to show the kind of phenomena we described
other depending on the values of the control parametergibove.

Analyzing several models of other related optical problems, o acknowledge support from Contract Nos. C11*-CT93-

such as bistable passive systems, a laser with optical fee@331 and TMR96010 of the EEC. These results were an-
back[11], or a laser with a saturable absorp&2], it is easy  nounced at a conference on Nonlinear Dynamics in Optics in
to recognize that they possess in principle the necessamisa(ltaly) by one of us(P.C) in 1994.
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